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Abstract— This paper proposes Constrained Sampling Clus-
ter Model Predictive Path Integral (CSC-MPPI), a novel con-
strained formulation of MPPI designed to enhance trajectory
optimization while enforcing strict constraints on system states
and control inputs. Traditional MPPI, which relies on a
probabilistic sampling process, often struggles with constraint
satisfaction and generates suboptimal trajectories due to the
weighted averaging of sampled trajectories. To address these
limitations, the proposed framework integrates a primal-dual
gradient-based approach and Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) to steer sampled input
trajectories into feasible regions while mitigating risks associ-
ated with weighted averaging. First, to ensure that sampled
trajectories remain within the feasible region, the primal-
dual gradient method is applied to iteratively shift sampled
inputs while enforcing state and control constraints. Then, DB-
SCAN groups the sampled trajectories, enabling the selection
of representative control inputs within each cluster. Finally,
among the representative control inputs, the one with the
lowest cost is chosen as the optimal action. As a result, CSC-
MPPI guarantees constraint satisfaction, improves trajectory
selection, and enhances robustness in complex environments.
Simulation and real-world experiments demonstrate that CSC-
MPPI outperforms traditional MPPI in obstacle avoidance,
achieving improved reliability and efficiency. The experimental
videos are available at https://cscmppi.github.io

I. INTRODUCTION

Model Predictive Path Integral (MPPI) [1] is a sampling-
based Model Predictive Control (MPC) method that op-
timizes control inputs by evaluating a large number of
trajectory samples drawn from a stochastic distribution.
Unlike traditional MPC frameworks [2]–[5], which typically
require iterative optimization, MPPI directly approximates
the optimal control distribution through sampling, making it
highly effective for real-time trajectory planning in dynamic
and uncertain environments. By incorporating stochasticity
into the control process, MPPI enhances robustness and
flexibility, allowing it to adapt to rapidly changing conditions.

Despite its advantages, MPPI still faces several limitations,
particularly in constraint satisfaction. Because MPPI relies on
a weighted averaging process to compute the final control in-
put, it often struggles to enforce hard constraints on state and
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Fig. 1: Comparison of standard MPPI and CSC-MPPI. (a)
Standard MPPI results, where the sampled trajectories (red
solid lines) are predominantly located in high-cost regions,
resulting in a suboptimal path (cyan solid line) that leads
to collision with the obstacle. (b) CSC-MPPI first adjusts
the particles to ensure they satisfy constraints and then
clusters the trajectories (red and orange solid lines) based
on spatial proximity and cost similarity. Trajectories that do
not belong to any cluster are considered noise trajectories
(gray solid lines). (c) An optimal trajectory is selected from
each cluster (light blue and yellow dashed lines). (d) Finally,
the trajectory with the lowest cost among clusters is selected
as the final optimal trajectory (cyan solid line).

control variables. Thus, as shown in Fig. 1a, when sampled
trajectories are overly concentrated in high-cost regions or
lack sufficient diversity, MPPI becomes susceptible to local
minima and potential collisions with obstacles.

Hence, in this paper, we propose a novel MPPI
framework—Constrained Sampling Cluster MPPI (CSC-
MPPI)—which integrates a primal-dual gradient-based ad-
justment with Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) clustering to efficiently enforce
control constraints and ensure trajectory feasibility.

A. Related Works

In traditional MPC frameworks, extensive research has
been conducted to incorporate constraints into optimization



methods such as Sequential Quadratic Programming (SQP)
and Differential Dynamic Programming (DDP), leading to
improved control performance in complex environments [6]–
[9]. However, few studies have focused on constraint en-
forcement within MPPI as its inherent reliance on random
sampling makes it challenging to impose strict constraints.
This limitation restricts applicability in safety-critical or
constrained environments.

To address this problem, Yan and Devasia [10] intro-
duced Output-Sampled MPPI (o-MPPI), which improves
constraint satisfaction by selectively sampling within pre-
defined acceptable regions in the output space. However,
o-MPPI does not provide a clear strategy for handling
samples that fall outside these acceptable regions. Balci et al.
[11] proposed Constrained Covariance Steering-Based MPPI
(CCS-MPPI), which enforces state and input constraints
through hyperplane-based method. Nonetheless, its reliance
on probabilistic constraints can lead to occasional violations.
To strengthen constraint handling in MPPI, Yin et al. [12]
developed Shield-MPPI, which combines a dual-layer safety
mechanism with Control Barrier Functions (CBFs), a cost
function that penalizes unsafe trajectories, and a reactive
safety shield that adjusts controls in real time. Although
this structured approach enhances safety, it still depends
on soft constraints and cannot fully guarantee constraint
satisfaction. Finally, Tao et al. [13] introduced SCBF-MPPI,
which embeds stochastic control barrier functions (SCBFs)
directly into the sampling process, dynamically shifting the
mean and covariance of the sampling distribution to ensure
trajectories remain within safe regions. However, SCBF-
MPPI also operates probabilistically, thus absolute constraint
enforcement remains unattainable.

In summary, while these approaches each enhance MPPI’s
constraint-handling capabilities, they all share a common re-
liance on soft constraints. Consequently, they cannot strictly
guarantee state and control constraint satisfaction.

B. Overview of Our Approach

To overcome the limitations of conventional MPPI in
constraint enforcement, we propose Constrained Sampling
Cluster MPPI (CSC-MPPI), which integrates explicit hard
constraint satisfaction into the MPPI framework while pre-
serving its adaptability. The proposed approach consists of a
sequential process that refines the standard MPPI sampling
strategy to ensure feasibility.

Initially, trajectories are sampled from a Gaussian proposal
distribution centered around the initial estimate control input,
following the standard MPPI formulation. To enforce con-
straints, each sampled trajectory undergoes an iterative ad-
justment process using a primal-dual gradient-based method
[14], which shifts infeasible trajectories into the feasible
region while maintaining their structural integrity. This step
ensures that the sampled trajectories comply with both state
and control constraints. Following constraint enforcement,
the adjusted trajectories are grouped based on spatial proxim-
ity and cost similarity using DBSCAN [15] (see Fig. 1b). The
clustering process mitigates the effects of weighted averaging

TABLE I: Symbol and corresponding meaning

Symbol Description
a Scalar
a Vector
A Matrix

a and a Lower bound and Upper bound of a
kai i-th vector of the k-th sampled sequence
kA k-th sampled sequence

by filtering out outliers and preventing high-cost trajectories
from influencing control selection. Finally, from each iden-
tified cluster, a representative control input is selected (see
Fig. 1c), and among these candidates, the trajectory with the
lowest cost is chosen as the final control action (see Fig. 1d).
Consequently, the proposed MPPI framework can generate
optimal trajectories while strictly satisfying hard constraints.

Therefore, the main advantages of the proposed control
framework are as follows: First, unlike conventional MPPI
methods that rely on soft constraints, CSC-MPPI explicitly
enforces hard constraints on both states and control inputs,
ensuring feasibility in highly constrained environments. To
the best of the authors’ knowledge, this work represents
the first attempt to impose hard constraints on both state
and control inputs within the MPPI framework. Second, the
integration of DBSCAN eliminates the risk of constraint vio-
lations caused by weighted averaging. In addition, DBSCAN
prevents sample clustering in high-cost regions, reducing the
risk of local minima and improving trajectory efficiency.
Finally, extensive simulation and real-world experiments on
mobile robot obstacle avoidance demonstrate that CSC-MPPI
robustly handles constraints and consistently achieves safe
and efficient trajectories.

Overall, the experimental results demonstrate that CSC-
MPPI reliably enforces hard constraints and optimizes tra-
jectories in challenging obstacle avoidance scenarios. These
findings underscore its potential for real-time applications
across diverse robotic platforms.

The remainder of this paper is as follows. Section II
reviews the MPPI algorithm and its problem formulation.
Next, we present the formulation of CSC-MPPI with primal-
dual gradient method and DBSCAN in Sec. III. Section
IV describes the experimental validations of the proposed
method. Finally, the paper is concluded in Sec. V.

II. PRELIMINARIES

In this section, we provide the necessary background
including problem formulation and the MPPI framework to
facilitate a clear understanding of the proposed framework.
To enhance readability, Table I shows mathematical notation
and its corresponding meaning in this paper.

A. Problem Formulation

Let’s consider a discrete-time stochastic dynamical system,

xt+1 = f(xt,ut + δut), (1)

where xt ∈ Rn, ut ∈ Rm are the state and the control input
of the system, respectively, and δut ∼ N (0,Σu) denotes
Gaussian noise with zero mean and covariance Σu, all at



time step t. Given a time horizon N , the control sequence is
defined as U = [u0,u1, ...,uN−1]

T ∈ RN×m, representing
the set of control inputs over the horizon. Similarly, the
state trajectory is denoted by X = [x0,x1, ...,xN ]T ∈
R(N+1)×n, capturing the system states across the time steps.
Let xs and xf denote the initial state and desired state
of the robot, respectively. The goal is to determine an
optimal control sequence U∗ that minimizes a given cost
function while satisfying system constraints, guiding the
robot from the initial state xs to the desired state xf . Thus,
the optimization problem can be formulated as follows:

min
U

J = E

[
ϕ(xN ) +

N−1∑
t=0

(
l(xt) +

1

2
uT
t Rut

)]
,

s.t. xt+1 = f (xt,ut + δut) , δut ∼ N (0,Σu),

Xrob(xt) ∩ Xobs = ∅, g(xt,ut) ≤ 0,

x0 = xs, ut ∈ U , xt ∈ X ,

(2)

where Xrob ⊂ X d and Xobs ⊂ X d represent the regions
occupied by the robot and the obstacles in a d-dimensional
space, g(xt,ut) denotes the inequality constraints, U de-
notes the feasible control input space, and X denotes the
feasible state space. The cost function J consists of the
expectation of a running cost l(xt), a terminal cost ϕ(xN ),
and the control input penalty term 1

2u
T
t Rut, where R ∈

Rm×m is a positive-definite matrix.

B. Review of the MPPI
MPPI is a control framework that solves optimal con-

trol problems by leveraging stochastic sampling techniques.
Instead of relying on traditional gradient-based methods,
MPPI explores the control space by drawing samples from a
predefined distribution and evaluating their performance in a
cost-minimization framework. To describe the probabilistic
formulation of MPPI, the probability function of the distri-
bution Q can be expressed as follows:

q(V ) = Z−1
N−1∏
t=0

exp

(
−1

2
(vt − ut)

TΣ−1
u (vt − ut)

)
,

(3)
where Z =

√
(2π)m|Σu| is the normalization term, and

vt = ut + δut is the actual control input, with vt ∼
N (ut,Σu). Although MPPI aims to determine the optimal
control input sequence U∗ by solving (2), finding a direct
solution is challenging. Therefore, MPPI instead minimizes
the Kullback-Leibler (KL) divergence between the optimal
distribution Q∗ and the proposal distribution Q, which can
be formulated as follows:

U∗ ≃ argmin
U

DKL(Q∗ ∥ Q). (4)

By applying the Free-energy and Jensen’s inequality to
minimize the KL divergence in (4), the optimal control
formulation can be derived as follows:

U∗ = argmin
U

EQ∗

[
1

2

N−1∑
t=0

(vt − ut)
TΣ−1

u (vt − ut)

]
= EQ∗

[
kV
]
,

(5)

where kV = [kv0,
kv1, ...,

kvN−1]
T represents the k-th

control sequence sampled from the optimal distribution Q∗.
Since directly sampling from the optimal distribution Q∗ is
challenging, MPPI employs the importance sampling tech-
nique to efficiently obtain the optimal control sequence U∗.
The expectation with respect to the optimal distribution Q∗

can be rewritten using importance sampling as follows:

U∗ =

∫
q∗(V )

q(V )
q(V )V dV ≃

K−1∑
k=0

w(kV ) kV , (6)

w(kV ) =
1

η
exp

(
− 1

λ
S(kV )−

N−1∑
t=0

(ût − ũt)
TΣ−1

u
kvt

)
,

(7)

η =

K−1∑
k=0

exp

(
− 1

λ
S(kV )−

N−1∑
t=0

(ût − ũt)
TΣ−1

u
kvt

)
dV ,

(8)
where S(kV ) = ϕ(kxN ) +

∑N−1
t=0 l(kxt) represents the

cost of the k-th sample, ût denotes the initial estimate of
the control input, and ũt denotes the nominal control input,
respectively. λ represents the temperature parameter. MPPI
utilizes the sampled control inputs to compute a weighted
average, allowing it to obtain the optimal control sequence
without the need for iterative updates. In practice, only the
first control input from the computed sequence is applied to
the system. A detailed derivation can be found in [16].

III. CONSTRAINED SAMPLING CLUSTER MPPI

As discussed in Section I, MPPI often struggles to handle
hard constraints on states and control inputs. Since trajectory
updates in MPPI emerge from stochastic sampling and
weighted averaging, naive application can lead to locally
suboptimal or even infeasible solutions—particularly when
sampled trajectories cluster in high-cost regions. In such
scenarios, MPPI may become trapped in local minima,
generate suboptimal paths, or increase the risk of colli-
sions. To address these limitations, this paper introduces
CSC-MPPI, which integrates a primal-dual gradient-based
adjustment with DBSCAN clustering. As illustrated in Fig.
2, the approach begins by drawing trajectory samples from
a proposal distribution, similar to standard MPPI. Instead
of keeping these trajectories unconstrained, a primal-dual
gradient method iteratively refines them to ensure compliance
with prescribed state and control bounds. Once feasibility is
ensured, DBSCAN clusters the resulting control candidates
based on spatial proximity and cost similarity. Clustering
serves to mitigate the risk that arises when the weighted aver-
aging process in MPPI undermines the imposed constraints.
Although the sampling process ensures constraint satisfaction
initially, weighted averaging over samples with similar costs
may degrade constraint adherence. By forming clusters that
account for both cost similarity and spatial proximity, DB-
SCAN reduces this risk and maintains feasibility. From each
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Fig. 2: Overview of the CSC-MPPI process. (a) The gray circle represents an obstacle, while the green and red distributions
correspond to the optimal and proposal distributions, respectively. The beige-colored region indicates the feasible region
where both state and control input constraints are satisfied. (b) The sampled particles are randomly drawn from the proposal
distribution. (c) Then, the sampled particles are moved into the feasible region using the primal-dual gradient method. (d)
The sampled particles are clustered using DBSCAN, and the optimal input for each cluster is determined. (e) Among the
optimal inputs from each cluster, the one with the lowest cost is selected as the final optimal input.

cluster, the control input with the lowest cost, as determined
by the MPPI cost function, is selected for execution.

CSC-MPPI addresses two major challenges in environ-
ments with strict constraints: (i) ensuring that random sam-
ples satisfy strict state and control requirements, and (ii)
preventing the risk of constraint violations that may arise
during weighted averaging when sampled costs are similar.
By utilizing constraint-aware and density-based clustering,
DBSCAN further mitigates potential instability in weighted
averaging under such conditions. The proposed approach
enhances feasibility, improves robustness, and prevents un-
desired local minima in complex control tasks.

A. Primal-Dual Gradient-Based Constraint Enforcement

As shown in Fig. 2c, the main idea of the proposed method
is to shift the randomly sampled candidates into the feasible
region defined by the prescribed constraints. Formally, this
can be expressed as follows:

min
kvt

g(kxt+1) · 1{g(kX)>0}

s.t. v ≤ kvt ≤ v,
(9)

where g(kxt+1) is a concave inequality constraint function
that indicates whether a trajectory satisfies the required con-
ditions. The notation kX = {kx0,

kx1, ...,
kxN}T denotes

the state sequence of the k-th sampled trajectory over the
prediction horizon. The indicator function 1{g(kX)>0} eval-
uates to 1 if g(kX) > 0, and 0 otherwise, thereby ensuring
that any infeasible trajectories (i.e. those with g(kX) > 0)
are adjusted during the optimization. Additionally, v and v
represent the lower and upper bounds of the control input,
respectively, restricting control inputs to the feasible range.

To solve (9), we employ a primal-dual gradient method, an
iterative strategy widely used for constrained optimization. In
this framework, the primal variable (the optimization variable
kvt) is updated via the gradient of the Lagrangian, where
the dual variables (Lagrange multipliers) are updated to
enforce satisfaction of the constraints. Through this iterative
process, the optimization objective is aligned with constraint
satisfaction, ensuring convergence to a feasible and optimal
solution. The Lagrangian function at time step t for the k-th
sampled candidate is defined as follows:

kLt(
kvt,

kµt,
kµt) = g(kxt+1) · 1{g(kX)>0}

+kµT
t (v − kvt) +

kµT
t (

kvt − v),
(10)

where kµ
t

and kµt are the Lagrange multipliers correspond-
ing to the lower and upper control input bounds, respectively.
The gradient of the Lagrangian with respect to kvt is then
given by:

∇kvt

kLt(
kvt,

kµt,
kµt) = ∇kvt

g(kxt+1) · 1{g(kX)>0}

− kµt +
kµt,

(11)
where

∇kvt
g(kxt+1) =

∂g(kxt+1)

∂f(kxt, kvt)

∂f(kxt,
kvt)

∂ kvt
(12)

To maintain feasibility, the Lagrange multipliers are updated
by projecting them onto the nonnegative orthant, thus pre-
venting negative values that would violate the Karush-Kuhn-
Tucker (KKT) conditions [17]:

kµnew
t = max(0, kµt + β1 ◦ (v − kvt))

kµnew
t = max(0, kµt + β2 ◦ (kvt − v)),

(13)

where β1 and β2 are step size parameters controlling how
aggressively each multiplier is adjusted, and ◦ denotes the
element-wise product operator. The primal variable kvt is
then updated via gradient descent as follows:

kvnew
t = kvt −α ◦ ∇kvt

kLt(
kvt,

kµt,
kµt) (14)

where α is a step size that determines the magnitude of
the update. This approach is designed to enforce the KKT
conditions, ensuring feasibility in constrained optimization
problems. The algorithm alternates between updating the
primal variable kvt and the dual variables kµ

t
and kµt.

Iterations continue until all KKT conditions are satisfied,
ensuring convergence to an optimal solution. Specifically,
the algorithm iterates until primal feasibility, dual feasibility,
stationarity, and complementary slackness conditions hold.
By iteratively re-adjusting control inputs and multiplier val-
ues, this primal-dual gradient method enforces the constraints
throughout the optimization process and ensures that infea-
sible trajectories are pushed into the feasible set.



B. Clustering Sampled Trajectories Using DBSCAN

Even though the primal-dual gradient step ensures that
the sampled trajectories remain within the feasible region,
the weighted averaging process has the potential to produce
an optimal trajectory that violates the constraints. To pre-
vent this, we utilize DBSCAN, a density-based clustering
technique, into the trajectory selection process. Unlike tradi-
tional clustering algorithms such as k-means, which require
a predefined number of clusters, DBSCAN autonomously
adapts to both the spatial distribution and cost variation of
the samples. Instead of imposing a fixed cluster structure,
DBSCAN identifies groups based on density, allowing it to
dynamically adjust to the sampled trajectories. It classifies
samples into core points, which have sufficiently many
neighbors within a specified radius; border points, which
lie near core points but lack enough neighbors to be core
themselves; and outliers (noise points), which do not fit
into any cluster. This density-based approach is particularly
advantageous for MPPI, as the number and configuration
of feasible trajectories vary due to the stochastic nature of
random sampling in each iteration. By filtering out outliers,
DBSCAN reduces the likelihood of incorporating unstable
or unreliable control inputs in subsequent averaging steps,
thereby improving the robustness of the control process.

Several studies have explored the integration of DBSCAN
with MPPI for trajectory selection [18], [19]. However, these
approaches primarily focus on improving sampling efficiency
rather than explicitly addressing constraint violations caused
by weighted trajectory averaging. In contrast, the proposed
framework leverages DBSCAN to enforce constraint-aware
trajectory selection, ensuring that the final control input
remains feasible. Specifically, each sampled control input
noise kδU is paired with its corresponding cost S(kV ) to
form the input data for DBSCAN. The algorithm then groups
these control inputs by considering both cost similarity and
trajectory geometry similarity. Within each cluster, a cost-
weighted average control input is computed following the
usual MPPI procedure, as shown in Fig. 2d. Finally, among
the averaged control inputs generated from each cluster,
the one with the lowest cost is selected for execution, as
depicted in Fig. 2e. By filtering out high-cost or inconsistent
trajectories before averaging, DBSCAN promotes feasible
solutions, mitigating the tendency to drift toward subop-
timal or constraint-violating directions. The integration of
DBSCAN not only improves the resilience of MPPI to local
minima and outlier samples but also enforces feasibility
under the most stringent state and control constraints.

Algorithm 1 summarizes the overall flow of the CSC-
MPPI framework, detailing the sequential steps from ini-
tial trajectory sampling and constraint adjustment via the
primal-dual gradient method to subsequent clustering using
DBSCAN and the final selection of the optimal control input.

IV. EXPERIMENTS
In this section, we validate the effectiveness of the pro-

posed method through simulations and real-world exper-
iments. In the simulation environment, we compare the

Algorithm 1 Constrained Sampling Cluster MPPI

Require:
f,Σu, λ: Dynamics, Noise Covariance, Temperature
x0,U : Initial Condition, Initial Control Sequence
K,N : Number of Samples, Number of Time Steps
α,β1,β2: Primal-Dual Gradient Step Size
l, ϕ: Running Cost, Terminal Cost

1: for k ← 0 to K − 1 do ▷ In Parallel
2: kx0 ← x0

3: for t← 0 to N − 1 do
4: δ kut ∼ N (0,Σu)
5: kvt ← ut + δ kut

6: kxt+1 ← f(kxt,
kvt)

7: end for
8: while KKT Conditions not Satisfied do
9: for t← 0 to N − 1 do

10: kµt ← max(0, kµt + β1 ◦ (v − kvt))

11: kµt ← max(0, kµt + β2 ◦ (kvt − v))
12: kvt ← kvt +α ◦ ∇kvt

kLt(
kvt,

kµt,
kµt)

13: kxt+1 ← f(kxt,
kvt)

14: end for
15: end while
16: for t← 0 to N − 1 do
17: δ kut ← kvt − ut

18: kS ← kS + l(kxt) + uT
t Σ

−1
u

kvt

19: end for
20: kS ← kS + ϕ(kxN )
21: end for
22: D ← {(kδU , kS) | k = 0, . . . ,K − 1}
23: {C0, . . . , CM−1} ← DBSCAN(D)
24: for m← 0 to M − 1 do
25: U∗

Cm
← MPPI(λ,U , δUCm

, SCm
)

26: end for
27: U∗ ← argminU∗

C
S(U∗

C)
28: function MPPI(λ,U , δU , S)
29: ρ← min(0S, · · · , d−1S)
30: η ←

∑d−1
i=0 exp

(
− 1

λ (
iS − ρ)

)
31: for i← 0 to d− 1 do
32: iw ← 1

η exp
(
− 1

λ (
iS − ρ)

)
33: end for
34: U∗ ← U +

∑d−1
i=0

iwδ iU
35: return U∗

36: end function

proposed method with standard MPPI in obstacle avoidance
task. Additionally, to examine the risk of constraint violation
due to weighted averaging, we evaluate CSC-MPPI with and
without DBSCAN. Finally, the real-world experiments were
conducted to validate CSC-MPPI in practical scenarios.

A. Simulation Setup

In this study, we employ a differential-drive robot and
utilize its kinematic model. The system dynamics are given
as follows:
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Fig. 3: Simulation environments for performance compari-
son. In both scenarios, the purple circle represents the goal
position, and the black circle indicates the initial position of
the robot. Gray circles represent obstacles, with dashed gray
circles denoting the boundaries that account for the robot’s
footprint. (a) Environment #1, which includes one dynamic
and two static obstacles, designed to compare the perfor-
mance of standard MPPI and CSC-MPPI. (b) Environment
#2, a simplified environment with only one static obstacle,
used to evaluate the effect of DBSCAN in CSC-MPPI.

xt+1 = xt + uvt cos θt dt

yt+1 = yt + uvt sin θt dt

θt+1 = θt + uωt dt

(15)

The system state x = [x, y, θ]T represents the posi-
tion and orientation of the robot, while the control input
u = [uv, uw]

T represents the linear and angular velocity
commands. The simulations were conducted on a computer
equipped with an Intel Core i7-13700F processor running
at 2.1 GHz, 32 GB of RAM, and an NVIDIA GeForce
RTX 4060 GPU. Parallel computation was performed using
a Python-based simulation framework. For simulation envi-
ronment #1, the temperature parameter λ was set to 0.01,
while for simulation environment #2, λ was set to 0.7. The
remaining MPPI parameters were kept identical across both
environments. The covariance matrix Σu was defined as
diag(σ2

uv
, σ2

uw
) = diag(0.1, 1.0). The time horizon N was set

to 30 with a time step of dt = 0.03. The linear velocity was
constrained between 0 m/s and 0.5 m/s, while the angular
velocity was constrained between −3.0 rad/s and 3.0 rad/s.
The tolerance for the goal state is defined as τp = 0.1 for
the position (x, y) and τθ = 0.2 for the orientation θ. The
running cost l is defined as

l = (xt − xf )
TQ(xt − xf ), (16)

where Q = diag(10, 10, 0). The terminal cost ϕ is defined
as

ϕ = (xN − xf )
TH(xN − xf ), (17)

where H = diag(50, 50, 50). In the case of CSC-MPPI, the
obstacle constraint function is defined as:

g(x) = r2 − (x− xobs)
2 − (y − yobs)

2, (18)

where xobs and yobs are the coordinates of the obstacle center,
and r is the radius of the obstacle. In standard MPPI, a

Collision

(a) (b)

Fig. 4: Trajectory comparison of standard MPPI and CSC-
MPPI for the navigation task in Environment #1. (a) The
trajectories generated by standard MPPI with soft constraints
(K = 300). The red lines represent sampled trajectories,
while the cyan line indicates the optimal path. (b) The trajec-
tories generated by CSC-MPPI (K = 300). The red, yellow,
orange, and green lines represent clustered trajectories, while
the cyan line indicates the optimal path.

penalty cost is introduced as a soft constraint for obstacle
avoidance:

C =

{
104, if collision,
0, otherwise.

(19)

Each case was repeated 20 times in Environment #1 and
10 times in Environment #2.

B. Simulation Scenarios

As shown in Fig. 3a, Environment #1 is designed to
compare the performance of standard MPPI and CSC-
MPPI. The autonomous robot starts from the initial state
xs = [−1.0,−1.0, π/2]T and must navigate towards the
goal state xf = [2.0, 2.0, π/2]T while avoiding obstacles.
The environment includes one dynamic obstacle and two
static obstacles. The dynamic obstacle has a radius of 0.3 m
and moves from [−1.0, 0.0]T to [0.5, 0.0]T with a constant
velocity of 0.53 m/s. The static obstacles are centered at
[0.0, 1.0]T and [1.5, 0.7]T , with radii of 0.4 m and 0.5 m,
respectively.

As shown in Fig. 3b, Environment #2 is designed to
evaluate the performance of CSC-MPPI with and without
DBSCAN. The robot’s initial state is xs = [−1.0, 0.0, 0.0]T ,
and the goal state is xf = [1.0, 0.0, 0.0]T . The environment
consists of a single static obstacle centered at [0.0, 0.0]T with
a radius of 0.5 m. The number of sampled trajectories is set
to K = 300.

C. Simulation Results

The results for Environment #1 are summarized in Table II.
The collision rate represents the proportion of trials in which
the robot made contact with an obstacle during 20 test runs.
The path length denotes the total distance traveled by the
robot to reach the goal, while the average and maximum
computation times correspond to the processing time per



TABLE II: Performance comparison of standard MPPI and
CSC-MPPI with different sample sizes

Method Collision
Rate [%]

Path
Length [m]

Average
Time [ms]

Max
Time [ms]

Standard MPPI (K=20) 80 4.822 1.069 3.017
Standard MPPI (K=50) 50 4.755 1.698 3.463
Standard MPPI (K=300) 30 4.848 3.385 12.56
CSC-MPPI (K=20) 0 4.766 28.09 95.97
CSC-MPPI (K=50) 0 4.629 28.47 91.62
CSC-MPPI (K=300) 0 4.476 30.58 98.26

iteration of the algorithm. These metrics—path length, aver-
age computation time, and maximum computation time—are
computed exclusively for successful trials.

The evaluation of standard MPPI under different trajectory
sample sizes yielded collision rates of 80%, 50%, and 30%
for K = 20, 50, and 300, respectively. A reduction in
the number of sampled trajectories resulted in a higher
probability of collision, suggesting that standard MPPI ex-
hibits reduced robustness in obstacle avoidance when fewer
samples are available. In contrast, CSC-MPPI consistently
achieved a 0% collision rate across all scenarios, highlighting
the effectiveness of constraint enforcement. The experimental
results demonstrate that CSC-MPPI avoids collisions by
strictly adhering to feasibility constraints during trajectory
optimization. In terms of path length, CSC-MPPI produced
the shortest trajectory for K = 300, with a recorded path
length of 4.476 m. Standard MPPI, by comparison, generated
longer paths regardless of the number of sampled trajectories.
Notably, even with only K = 20, CSC-MPPI achieved a
path length of 4.766 m, which remained shorter than the
4.848 m path generated by standard MPPI at K = 300.
Since CSC-MPPI explicitly enforces obstacle avoidance as a
hard constraint, the optimization focuses on minimizing the
cost of reaching the goal while remaining within the feasible
solution space. This constraint-driven optimization tends to
produce more direct and shorter trajectories.

As shown in Fig. 4a, standard MPPI with soft constraints
does not always guarantee obstacle avoidance. When all
sampled trajectories collide with obstacles or when the
weight assigned to obstacle costs is lower than that of other
cost terms, obstacle avoidance is not ensured. In contrast,
as depicted in Fig. 4b, CSC-MPPI ensures that all sampled
trajectories satisfy the constraints, regardless of cost.

The computational efficiency of each method was also
analyzed. For both standard MPPI and CSC-MPPI, the av-
erage computation time increased as the number of sampled
trajectories increased, ranging from 1.069 ms to 3.385 ms
for standard MPPI and from 28.09 ms to 30.58 ms for
CSC-MPPI. Leveraging GPU-based parallel computation,
both methods maintained relatively low computation times
despite the increasing number of samples. The additional
computational overhead in CSC-MPPI was primarily due to
the gradient method. Clustering, required only an average of
3.711 ms for K = 20, 4.168 ms for K = 50, and 2.949 ms
for K = 300, a duration comparable to the total computation
time of standard MPPI. Despite the increased computational
cost, CSC-MPPI exhibited superior performance in collision

Constraint

Violation

(a) (b)

Fig. 5: Trajectory comparison of CSC-MPPI with and with-
out DBSCAN in Environment #2. (a) The trajectories gener-
ated by CSC-MPPI without DBSCAN. The red lines and
cyan line represent sampled trajectories and the optimal
trajectory obtained from (6), respectively. (b) The trajectories
generated by CSC-MPPI with DBSCAN. The red, yellow,
orange, and green lines represent clustered trajectories. The
cyan line indicates the final optimal trajectory.

avoidance and trajectory efficiency while utilizing only 10%
of the samples required by standard MPPI.

In Environment #2, the experiment was conducted to eval-
uate constraint satisfaction in CSC-MPPI with and without
DBSCAN. Both approaches achieved a 0% collision rate.
However, in terms of constraint satisfaction for the trajectory
corresponding to the optimal input sequence obtained from
(6), the satisfaction rate was 100% with DBSCAN, whereas
it dropped to 80% without DBSCAN. As shown in Fig. 5a,
even though the sampled trajectories satisfy the constraints, if
multiple sampled trajectories have similar costs, the weighted
averaging process may result in a trajectory that does not
satisfy the constraints. In contrast, as illustrated in Fig. 5b,
CSC-MPPI with DBSCAN selects a single cluster from
multiple groups, ensuring that the final optimal input se-
quence satisfies the constraints. Thus, the proposed method
effectively eliminates the risk of constraint violation caused
by weighted averaging.

D. Real-World Experimental Setup and Results

In addition to the simulation experiments, we con-
ducted real-world experiments using the LIMO robot (Agile
Robotics Co.). The onboard computing unit was an Intel
NUC i7, and the LiDAR sensor used for perception was
an EAI T-MINI Pro. Unlike the Python-based simulation,
which utilized parallel computation on a GPU, the real-world
experiment relied solely on CPU-based computations. For the
real-world experiments, the number of sampled trajectories
was set to K = 300, with a time horizon of N = 40 and a
time step of dt = 0.05. The control frequency was fixed at 10
Hz. The tolerance for the goal state was set as τp = 0.2 m,
τθ = 0.25 rad. Fig. 6 illustrates the real-world experiment,
showing the robot’s trajectory along with the corresponding
local cost map at different time steps. The test environment
contained a total of seven static obstacles, each with a radius
of 0.17 m. The robot was required to navigate from the initial
state xs = [0, 0, 0]T to the goal state xf = [6.15, 0.3, 0]T
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Fig. 6: Snapshots of the real-world experiment. The red line
and bottom images represent the actual trajectory of the robot
and local costmap, respectively.

while avoiding obstacles.
To evaluate the performance of the proposed approach

in real-world scenarios, we conducted 10 repeated trials.
The results showed a collision rate of 0%, demonstrating
the robustness of the system in obstacle avoidance. The
average computation time was measured at 6.646 ms, with
the clustering process accounting for 1.715 ms of the total
computation time. The maximum computation time was
recorded as 38.89 ms. These results validate the efficiency
of the CSC-MPPI framework, highlighting its capability to
generate feasible and safe trajectories in real-time applica-
tions.

Since the real-world experiments relied on CPU-based
computations, we employed a clamping technique in (9)
to reduce computation time. Clamping is a simple and
efficient method that ensures constraint satisfaction by di-
rectly clipping control inputs. Given the relatively simple
constraints in our setup such as velocity limits, clamping
was sufficient without significantly affecting performance.
However, in more complex scenarios involving coupled
constraints, or high-dimensional constraints, clamping may
lead to suboptimal solutions. In such cases, the gradient
method proposed in this paper would be more suitable, as
it iteratively adjusts dual variables to better handle intricate
constraints.

V. CONCLUSIONS

In this paper, we introduced a novel Constrained Sam-
pling Cluster MPPI (CSC-MPPI) framework that integrates
a primal-dual gradient-based constraint enforcement method
with DBSCAN clustering to overcome the inherent limita-
tions of standard MPPI in satisfying hard constraints. By
iteratively adjusting sampled control inputs into the feasible
region and clustering them based on spatial and cost similar-
ities, the proposed approach effectively selects the optimal
control action while strictly adhering to both state and input
constraints. Simulation and real-world experimental results
demonstrate that CSC-MPPI achieves a zero collision rate
and generates shorter, more feasible trajectories compared
to conventional MPPI methods, thereby validating its ef-
fectiveness and robustness in complex obstacle avoidance
tasks. Future work will focus on enhancing computational

efficiency and extending the framework to more challeng-
ing environments and diverse robotic platforms including a
mobile manipulator and humanoid.
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